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Exact large amplitude capillary waves on sheets of fluid 

By WILLIAM KINNERSLEY 
Physics Department, Montana State University, Bozeman 

(Received 3 October 1975 and in revised form 6 April 1976) 

We generalize Crapper’s exact solution for capillary waves on fluid of infinite 
depth. We find two finite-depth solutions involving elliptic functions. We show 
they can also be interpreted as large amplitude symmetrical and antisymmetrical 
waves on a fluid sheet. Particularly interesting are the waves obtained from our 
solution in the limit when the fluid sheet is extremely thin. 

1. Introduction 
Small amplitude capillary waves on fluid surfaces form a well-known part of 

the classical theory of hydrodynamics, and have been studied in great detail in 
the past. For example, such waves on the plane surface of fluids of both finite and 
infinite depth and on the cylindrical surface of a uniform fluid jet have been 
treated. Also, Taylor (1959) has analysed the small amplitude capillary waves 
which occur on a thin fluid sheet. He has observed that both symmetrical and 
antisymmetrical waves of this type can exist, and he was able to produce both 
of them experimentally, using fluid sheets as thin as 5-100pm. 

Large amplitude capillary waves are not as well known. A remarkable exact 
wave solution in this category was presented by Crapper (1957). It represented 
a particular class of large amplitude capillary waves on fluid of infinite depth. 
Further, Crapper’s solution had the virtue of extreme simplicity, involving only 
elementary functions. At that time, Crapper made the following statement: 
“there is also an exact solution if the fluid has finite uniform depth” but “the 
analysis needed is too elaborate to make this solution worthwhile”. In  view of 
its importance, i t  is surprising that this statement has gone untested for almost 
twenty years. 

In the present paper we shall examine this point, and show that Crapper’s 
remark is inaccurate in two respects. First, there is not m e  generalization but two. 
They turn out to be large amplitude versions of Taylor’s symmetrical and anti- 
symmetrical sheet waves. Secondly, the analysis is by no means complicated. 
Despite the presence of elliptic functions in the solutions, the analysis needed is 
no more than a straightforward generalization of Crapper’s own approach. In  
particular, the dispersion formulae which give the wave velocity turn out to be 
quite simple. 

Just as in Crapper’s case, we shall find that there is a maximum amplitude 
allowed for the waves. For very large amplitudes the solutions become multi- 
valued, and hence are no longer suitable on physical grounds. Some new and 
particularly interesting results will be obtained in another limiting case, when 
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the sheet is allowed to become very thin. The antisymmetrical waves then reduce 
to a particular solution of the simpler (but still nonlinear) problem of large ampli- 
tude waves on a uniform elastic string. The symmetrical waves become what may 
be regarded as a new type of wave: an essentially nonlinear wave, in which the 
phase velocity is proportional to the square root of the amplitude. 

2. Basic equations 
Consider a capillary wave progressing to the right with phase velocity c. Let 

(x, y) be a system of Cartesian co-ordinates moving with the waves, so that the 
flow appears to be steady. Let x be measured to the left (upstream) and let y be 
measured vertically downwards from the undisturbed surface. To obtain an exact 
solution we must ignore both the viscosity of the fluid and the induced motion of 
the surrounding atmosphere (even though there is no reason to expect that these 
effects will be unimportant in practice; cf. Crapper, Dombrowski & Pyott 1975). 

We must solve Laplace's equation 
A 

V2@ = 0 (1) 

( 2 )  

@ g + Y / y D x  = 0 (3) 

A 

for the velocity potential, 0, subject to the boundary conditions 
A h  

+p(@i + 0;) + p  -pgy = +pc2, 
h A 

a t  the free surface y = q(x). 
We make use of the standard formulation in terms of complex variables: 

where $ is the stream function, u and u theTeiocity components, and y^ and 8 the 
speed and direction of flow. We now take (@, Y) as the independent co-ordinates 
in place of (x, y), since this transforms the free boundary into a fixed line \?r = 0. 

y^ = e7, 

we see that r - ie must be an analytic function of 6 + &, implying the Cauchy- 
Riemann relations 

( 5 )  

(6) 

Defining r by the relation 

06 = r+, 09 = -76. 

If p,, is the atmospheric pressure (assumed constant) and the fluid has a pre- 
scribed surface tension T, then the effective pressure at the surface of the liquid is 

P = P,,+KT, (7) 

where K is the curvature of the surface streamline: 

Setting p,, = 0 for convenience, the remaining boundary condition, equation ( 2 ) ,  
becomes &pg2 + Ti+ = +pc2. 
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Alternatively, in terms of the dimensionless variables 

q = c-lqh, Y = (pc/T) f?, CD = (pc /T)  6 (9) 

it is qy = i(1 -qz)  at Y = 0. (10) 

Following Crapper, we arbitrarily assume a more general condition to  hold 

(11)1 (12) 
throughout the fluid: 

qy = i(1 -q2)f(Y), f(0) = 1. 

Physically, the import of this assumption is that any streamline in the moving 
fluid has potentially all the properties required of a free boundary. If the fluid on 
one side of a streamline were suddenly removed, the fluid on the other side could 
continue its flow undisturbed. (However the normalization condition (12) would 
not in general be satisfied on the new surface, and there would be required a 
different surface tension, constant but not equal to T.) Clearly the assumption 
is a restrictive one and many other possible types of motion will be excluded by it. 

Defining a function P ( Y )  by 

P(W = exp (Jf(WCE-YPL (13) 

the normalization condition (12) becomes 

P’(O)/P(O) = 1. (14) 

Equation (1  1)  may now be integrated with respect to Y, yielding 

where Q(@) is the integration constant.? Thus 

P(W -@(a) 
= P ( Y )  + Q(@)’ 

All that remains is to satisfy Laplace’s equation. In  terms of [ it  is a nonlinear 
equation: 

Inserting (15) into (17) we get 

( 6 2 -  1) v25 = 2gvg. vg. 

(P2 - Q2) [P”/P - &“/&I = 2 [ P 2  + Qr2].  

(17)  

(18) 

In  each term the primes denote differentiation with respect to the corre- 
sponding argument. Separation of variables is accomplished by differentiating 
twice more, once with respect to Y and once with respect to CD. We find eventually 
in this manner that P and Q must be solutions of the following ordinary nonlinear 
differential equations: 

(19) 

~ 1 -  c2Q2-cc,Q47 (20) 

P’2 = c1 + c2 P2 + cg P4, 

Q’2 = - 

where cl, c2 and cQ are all arbitrary separation constants. Since we want our solu- 

t Our functions P(V) and &( Q) correspond to Crapper’s functions 9 ( Y )  and Y (  Q). 
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tion to represent a wave of finite amplitude, the function Q must be bounded and 
periodic. This requirement does place some restrictions on cl, c2 and c3, as we 
shall see.! 

3. Solutions 
In  general, the solutions of (19) and (20) involve elliptic functions. (An excellent 

reference for these is Byrd & Friedman 1971). In  fact all twelve of the Jacobi 
elliptic functions satisfy differential equations of this type. The numerous possi- 
bilities can be resolved by examination of the quadratic form 

g(x) = c ,+c ,x+c3x2.  

To obtain a solution which is real we must restrict consideration to those ranges 
of x > 0 such that g(x) > 0 for (19), or g(x) < 0 for (20). Since Q must be bounded, 
we require also that the range of x for (20) be bounded. These conditions 
reduce the number of possible cases to three, which are illustrated in figure 1. 
(Case I11 may of course be obtained as a limit of case I or case 11, but it is just as 
simple to treat it  separately.) 

For case I the general solutions of (19) and (20) may be written as 

P = nd(@,k'), Q = cd($,k), 

where k is the modulus of the elliptic function, k' is the complementary modulus 
and 

The three original arbitrary constants cl, c2 and c3 have now been replaced by the 
equivalent set of constants A ,  B and k .  (Simple algebraic equations may be given 
to relate the two sets but they are never actually needed.) 

To make the notation more concise we shall not write out each time the depend- 
ence of these functions on the modulus. In  all that follows, it is to be understood 
that functions of 4 have modulus k and functions of 

An alternative form exists for the case I solution: 

Q = kcd# .  

@ = A Y + B ,  $ = A @ .  PI), (22) 

have modulus k'. 

P = dn$, 

This form may be obtained from the first via the identity 

dn$ = knd(k"-@) 

(where K'(k') is the complete elliptic integral) along with a suitable redefinition 
of A and B. In  fact all that we have done is to reverse the labelling of the stream- 
lines, so that @ increases upwards rather than downwards. Although the two 
versions are totally equivalent, it  is still very useful to consider them both. We 
refer to them as cases I a and I b.  

All possibilities for P and Q have been listed in table 1. From (5) and (15), we 
find 

The function 8 must next be determined by solving simultaneously the Cauchy- 



Exact large amplitude capillary waves on sheets of jluid 233 

FIUURE 1. The function g(z). 

Riemann relations (6). We find that in each case 8 may be taken to have the form 

8 = 2 t a r 1  (S($)/R($)). (24) 

Using this ansatz, the Cauchy-Riemann equations reduce to 

implying - P’R’IPR = Q’S’/QS. (26) 

Since one side is a function of $ while the other is a function of 4, both are equal 
to some constant, a say. The solutions for R, S and a are listed in table 1. 

Now we can write out the velocity components: 

and finally the displacements themselves, using (4): 

The integrals remaining in these last two equations can be expressed in terms of 
the complete elliptic integral E(u) .  They have been listed for each case in table 2. 

Before proceeding to the analysis of the solutions, we should point out some 
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Case P Q R S a 
sc $ sn $ - k'2 Ia nd $ cd $ 

IIa nc $ e n $  sd$ sd$ - 1  
IIb ds$ k e n $  cn$ k s d $  - 1  
111 cosh $ cos $ sinh $ sin$ - 1  

- k'2 Ib dn$ k c d $  cs $ k s n 4  

TABLE 1 

Case s P"lP d$ S Q"IQ d$ 

} k'$ - 2E($) + 2k2sn 9 cd$ 
Ia  
Ib (1+k2)$-2E(@) 
IIU 
I I b  $-2E(@) - 2dn$cs/@ 

(1 + k 2 )  $- 2E($) + 21c'2sn $cd @ 

} $-2E($) $ - 2E($) + 2dn$sc II. 

- 4  I11 @ - 

TABLE 2 

close relationships that exist among them. An obvious one is that case I11 may 
indeed be obtained from cases I a and I1 a in the limit k+ 0. 

Another relationship, which is not so obvious, connects cases I and I1 directly. 
Case I1 may be formally obtained from case I via the transformation (Byrd & 
Friedman 1971, p. 38) 

dn $+ cn $?I (31) 

E(qi)+[E(qi)-k2snqicdqi]/k'. dnqi+ndqi,l (32) 

$-+ k'$, sn $+I%' sn $, cn $+ dn $, 
E($) -+ [E($)- k2$1/k', 

qi -+ k'qi, sn qi+ k'sn qi, cn qi + cd qi, 

Needless to say, this is only a mathematical transformation, and does not 
prevent the solutions from being physically distinct. 

4. Interpretation 

We should now like to discuss the physical properties of these new waves. Using 
case I b as an example, we write out the displacements explicitly: 

Case I 

Recall that sn and cn range between 5 1 with period 4A7, while dn ranges 
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between 1 and Ic‘ with period 2K. The increase in x over one period of q5 determines 
the wavelength: 

( 3 5 )  h = x(q5 = 4K) -x (q5  = 0 )  = - 4T [3E- k‘2K], 
p ~ ~ A k ’ ~  

where E(k)  is the complete elliptic integral of the second kind. 
The constant A is determined by the normalization condition (14) a t  the 

surface streamline (which now carries the label @ = B). For case I b this condition 
is 

Assuming that B has been chosen to lie in the first quadrant, A must be negative. 
Whereas the original Y and @ increase downwards and to the right, a negative 
value of A implies that @ and q5 increase upwards and to the left. The same con- 
clusion holds for case I1 b. Cases I a ,  I1 a and I11 all turn out to have an A which 
is positive. This is exactly as expected, since the labelling of streamlines was 
reversed when the (b)  cases were being derived. 

Returning to case I b, let us examine the expression ( 3 4 )  for y. We see that 
q5 = 0 corresponds to a crest and q5 = 2K to a trough. If we follow an arbitrary 
streamline, the total variation in y will be 

1 = P’(B)/P(B) = - dV2 sn B cd B. ( 3 6 )  

sc 9. sn$cn@ - sn$cn@ 
dn@-k dn@+k 

Ay=- ( 3 7 )  

On t,he surface streamline, Ay gives us the trough-to-crest wave amplitude 

a = (4TIc/pc2AhP) sc B. ( 3 8 )  

Below the surface Ay decreases steadily from this maximum value. It passes 
through zero a t  the ‘centre streamline’ $ = 0 and is negative below it. Since Ay 
would become infinite a t  @ = - K‘, thefluid must have a lower boundary somewhere 
before that point is reached. 

One possibility is that the case I waves occur on a fluid of finite depth, with a 
fixed bottom surface a t  @ = 0. Note that we have R = 00 on this surface, implying 
8 = 0. However, since P = 1, the speed q is not constant. If the waves were viewed 
as moving by with the phase velocity c,  the fluid near the bottom would not be a t  
rest, but would slip back and forth to some degree. Of course this is not 
unexpected, since the usual gravity wave solutions for finite depth have the same 
property. 

The other possibility to consider is that the fluid has a second free boundary. 
Assuming that the surface tension has the same value T on both surfaces, the 
lower boundary must occur on the streamline which is symmetrically located 
relative to the centre-line, namely $ = - B. Under this interpretation, case I 
waves can be regarded as a nonlinear version of Taylor’s symmetrical waves on 
a fluid sheet. The depth or thickness h, measured from the centre-line to a trough 
on the surface, may be obtained from ( 3 4 )  as 

h = (T /pc2Ak’2 ) [ (1+7~2)B-2E(B) f2scB(dnB-k ) ] .  ( 3 9 )  

Equations ( 3 5 ) ,  ( 3 6 ) ,  ( 3 8 )  and ( 3 9 )  give the phase velocity, wavelength, ampli- 
tude and depth parametrically in terms of A ,  B and 12. The dispersion formula 
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may be derived by eliminating A, B and k among these equations. Letting 
K = 2E - kI2K, we find 

For each value of k we thus have a simple algebraic relation between c, h and a. 
Unfortunately it is not possible to eliminate k explicitly between (39 )  and (40) .  
We must retain k,  and regard it as a parameter which expresses the influence of 
the fluid‘s finite depth. 

Cases I1 and I11 
A similar analysis of case I1 b leads to the following equations: 

h = (4T/pc2A) [2E - K ] ,  

1 = -AcsBndB, 

4Tk nc B, 
4 T k  

b y  = -nc@, a = - pc2A pc2A 

h = (T/pc2A)[B-2E(B)+2snBdcB-2k(ncB- I)], 

K = 2E-K, 

In  this instance we see from ( 4 5 )  that Ay reaches a non-zero minimum at 
3 = 0, andis symmetric about that point. Therefore the most suitable interpreta- 
tion here is the one with a second free boundary at $ = - B. This solution is thus 
the large amplitude version of Taylor’s antisymmetrical sheet waves. 

Case I11 is the one previously treated by Crapper, but the results are also listed 
here for comparison: 

2sin$i5 1 T 
% = -  

pc2A [‘ -F cosh $ - COB $i5 ’ 

2sinh@ 1 T y = -  
pc2A [ @-- cosh $- cos $i5 ’ 

A = 2nT/pc2A, I = A tanhB, (5% (53) 

4T cosech B, a = - 
pc2A pc2A 
4T  

Ay = -cosech$, 
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FIGURE 2. Typical wave profiles. k = 0.5. (a) Case I. ( b )  Case 11. 

c 

!- 

h/h 

FIGURE 3. Critical amplitudes. 
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Wave profiles 

Typical wave profiles have been obtained by computer and are shown in figure 2. 
In  all three cases, when the amplitude reaches a critical value a,, the surface 
becomes vertical a t  certain points. When it reaches or exceeds a second critical 
value a2, the surface intersects itself and the solution can no longer be given a 
reasonable physical interpretation. The values of a,(lc) and a2(lc) have been 
obtained, and are shown in figure 3. 

5. Limiting cases 
The limit k+ 0 

To support the interpretations we have just given, we can easily examine the 
small amplitude limit of these exact solutions. In  particular we can show that the 
dispersion formulae correctly reduce to the well-known results of the small 
amplitude approximation. 

From (40 )  and (49), if a./h-+ 0 while h/h stays finite, we must necessarily have 
k+ 0. Recalling that all functions of and B refer to the complement,ary modulus 
lc', we have in this limit 

(57) 
dn B-+ sech ",I sn B -+ tanh B, 

E(B) -+ tanh B, 
cn B -+ sech B, 
2E - K -+ $77, 2E - V2K -+ in. 

Therefore we have for case I ,  from (35 )  and (38)-(40),  

and upon eliminating B we retrieve the familiar dispersion formula 

c2 = (T) 2nT tanh r?). 
Similarly, for case 11, from (43 ) ,  (46 ) ,  (47 )  and (49), 

which gives 

2nT 
c2 w (-) coth B, 

a h B  - 2kcoshB, - N - x-; h 277' PA 

c2 w ( y ) c o t h ( y ) .  

(59) 

The limit B -f 0 

With the possession of these exact finite-depth solutions, we are also in a position 
to examine a more interesting limiting case: that of shallow-water theory, in 
which both a/h -+ 0 and h/h -+ 0 but a/h stays finite. This limit represents capillary 
waves on a fluid sheet which is very thin. It is also equivalent to letting B -+ 0 
with lc fixed. 

Consider case I. From the same equations, (36 )  and (38)-(40),  with B+O, 

4TK B. c2 w - 
a lcB h ( 1 - l c ) Z  

h M K '  -=- a 4k ' PA 
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Eliminating B and k we find 

(63) c2 = (4TK2/ph2) {U + 2h + 2[h(h +a)]&}. 

The shape of the surface in this limit is given by 

x = (hj4n) [2E($) - k‘2$ + 2k sn $1, 
y = ( 4 4 k )  [dn $ + k en $I2. 

This is a well-behaved non-intersecting curve for all values of k. 
Next consider case 11. In  the thin-sheet limit 

and as B -+ 0 the speed becomes q = c = constant. This further implies that the 
distance between neighbouring streamlines is constant, and hence the entire sheet 
maintains constant thickness. From (43 ) ,  (46 ) ,  ( 4 7 )  and (49), 

a k h B  ~ T K  
_ N _  _ N -  c2,- 
h K’  h 4 K ’  phB’ 

giving the dispersion formula 
c2 = TJph .  

That is to say, in the thin-sheet limit the antisymmetric waves exhibit no 
dispersion ! This surprising fact has been noted by Taylor for the case he studied, 
in which a/h was also small, and also by Crapper et al. 

A rough explanation is that in the thin-sheet limit the fluid behaves like an 
elastic string of tension 2 T  and mass density 2ph. However, for large amplitudes 
the analogy is apparently not precise. Our T is a fixed constant, whereas for a 
stretched string the tension would be a constant plus a term proportional to the 
local extension in length. 

The shape of the surface in this limit is given by 

For k2 2 i, a/h 0.83, the surface becomes vertical a t  certain points. At values 
k2 2 0.73, u/h > 2.7, t.he surface intersects itself, and the solution no longer 
admits a physical interpretation. 

T h e  limit k + 1 

It is interesting also to consider a third limit: k+ I, corresponding to h/h, h/u+ 0 
with a/h finite. We have just seen that this will be possible only for case I. For the 
dispersion formula we have 

which shows a remarkably strong dependence of c on the amplitude. These are 
the ‘essentially nonlinear ’ waves referred to in the introduction. 
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d=O 

FIGURE 4. Case I profiles for k = 1. 

(4 (h )  
FIGURE 5. Profiles within the neck region. (a )  a/h < 4. ( b )  a/h > 4. 

From (33) and (34) we obtain the shape of the surface. This limit is somewhat 
more delicate to handle than the previous ones, because K-tco. For example, 
sn q5 becomes tanh q5 in the limit, but as - < 9 < + co only half of the wave is 
actually covered. To cover the entire wave we need to use at least two regions and 
match them together asymptotically. The straightforward limit k -+ 1 gives 

1 h sinhq5coshq5 cos2 B 
2 cosh2# - sin2 B] ' x=-[ y = a  [ cosh2 q5 - sin2 B * 

Eliminating q5 yields e) = (I -:) (1 +:tan2 B)  . 

This is the equation of an ellipse. The surface will be a series of ellipses, as shown 
in figure 4. The sheet thickness at each neck is small but non-zero, of order kr4. 
When a/h = $and B = 45", the ellipses become semicircles and arrive a t  each neck 
with vertical slope. For a/h > 4 consecutive ellipses overlap, and the solution is 
once again unphysical. However even for a/A < 4 it  is not clear that the solutions 
are everywhere physical, until we have examined the neck region in detail. As 
shown in figure 4, the curve spends an entire half-cycle near that point, and there 
could conceivably be a self-intersection or other singularity there. 



Exact large amplitude capillary waves on sheets of f luid 241 

Translate the exact solution by one half-cycle: q5 = + 2K.  This gives 

2kkt2 sd nd q5, 

(71 1 dn B + E cd 1'1 2~ + 2E($,) - El2$,  - 2k2 sn q5, cd q5, - 
4K 

and places the point of difficulty a t  q5 = 0. Letting 
limit e + 0 

e = &kI2, we obtain in the 

(72) 
x = +A + he2[$, + (1 - 2 sin2 B )  sinh 
y = he2[B + sin B cos B(2 cosh2q5, - 111. 

cosh $,I, 

This is a smooth curve, as shown in figure 5. For #, + - co, it  matches the curve 
of (69) for q5 + + 00. 

We have thus confirmed that, even in this extreme limit k - t  1,  the entire 
surface for case I does remain non-intersecting and physically acceptable 
provided only that alh < +. 
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